Comet
Comet machine learning platform integrates with your existing infrastructure and tools so you can manage, visualize, and optimize modelsโfrom training runs to production monitoring
In this guide we will demonstrate how to track your Langchain Experiments, Evaluation Metrics, and LLM Sessions with Comet.
Example Project: Comet with LangChain
Install Comet and Dependenciesโ
%pip install --upgrade --quiet comet_ml langchain langchain-openai google-search-results spacy textstat pandas
!{sys.executable} -m spacy download en_core_web_sm
Initialize Comet and Set your Credentialsโ
You can grab your Comet API Key here or click the link after initializing Comet
import comet_ml
comet_ml.init(project_name="comet-example-langchain")
Set OpenAI and SerpAPI credentialsโ
You will need an OpenAI API Key and a SerpAPI API Key to run the following examples
import os
os.environ["OPENAI_API_KEY"] = "..."
# os.environ["OPENAI_ORGANIZATION"] = "..."
os.environ["SERPAPI_API_KEY"] = "..."
Scenario 1: Using just an LLMโ
from langchain_community.callbacks import CometCallbackHandler
from langchain_core.callbacks import StdOutCallbackHandler
from langchain_openai import OpenAI
comet_callback = CometCallbackHandler(
project_name="comet-example-langchain",
complexity_metrics=True,
stream_logs=True,
tags=["llm"],
visualizations=["dep"],
)
callbacks = [StdOutCallbackHandler(), comet_callback]
llm = OpenAI(temperature=0.9, callbacks=callbacks, verbose=True)
llm_result = llm.generate(["Tell me a joke", "Tell me a poem", "Tell me a fact"] * 3)
print("LLM result", llm_result)
comet_callback.flush_tracker(llm, finish=True)
Scenario 2: Using an LLM in a Chainโ
from langchain.chains import LLMChain
from langchain_community.callbacks import CometCallbackHandler
from langchain_core.callbacks import StdOutCallbackHandler
from langchain_core.prompts import PromptTemplate
from langchain_openai import OpenAI
comet_callback = CometCallbackHandler(
complexity_metrics=True,
project_name="comet-example-langchain",
stream_logs=True,
tags=["synopsis-chain"],
)
callbacks = [StdOutCallbackHandler(), comet_callback]
llm = OpenAI(temperature=0.9, callbacks=callbacks)
template = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title.
Title: {title}
Playwright: This is a synopsis for the above play:"""
prompt_template = PromptTemplate(input_variables=["title"], template=template)
synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, callbacks=callbacks)
test_prompts = [{"title": "Documentary about Bigfoot in Paris"}]
print(synopsis_chain.apply(test_prompts))
comet_callback.flush_tracker(synopsis_chain, finish=True)
Scenario 3: Using An Agent with Toolsโ
from langchain.agents import initialize_agent, load_tools
from langchain_community.callbacks import CometCallbackHandler
from langchain_core.callbacks import StdOutCallbackHandler
from langchain_openai import OpenAI
comet_callback = CometCallbackHandler(
project_name="comet-example-langchain",
complexity_metrics=True,
stream_logs=True,
tags=["agent"],
)
callbacks = [StdOutCallbackHandler(), comet_callback]
llm = OpenAI(temperature=0.9, callbacks=callbacks)
tools = load_tools(["serpapi", "llm-math"], llm=llm, callbacks=callbacks)
agent = initialize_agent(
tools,
llm,
agent="zero-shot-react-description",
callbacks=callbacks,
verbose=True,
)
agent.run(
"Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?"
)
comet_callback.flush_tracker(agent, finish=True)